Алгоритм вычисления обратной матрицы с помощью алгебраических дополнений: метод присоединённой (союзной) матрицы. Решение матриц Арифметическая прогрессия. коротко о главном

Определитель матрицы

Нахождение определителя матрицы является очень частой задачей в высшей математике и алгебре. Как правило, без значения определителя матрицы не обойтись при решении сложных систем уравнений. На вычислении определителя матрицы построен метод Крамера решения систем уравнений. С помощью определения детермината определяют наличие и единственность решения систем уравнений. Поэтому сложно переоценить важность умения правильно и точно находить определитель матрицы в математике. Методы решения определителей являются теоретически довольно простыми, однако с увеличением размера матрицы вычисления становятся очень громоздкими и требуют огромной внимательности и много времени. Очень легко в таких сложных математических вычислениях допустить незначительную ошибку или описку, что приведет к ошибке в окончательном ответе. Поэтому даже если вы находите определитель матрицы самостоятельно, важно проверить полученный результат. Это позволяет сделать наш сервис Нахождение определителя матрицы онлайн . Наш сервис выдает всегда абсолютно точный результат, не содержащий ни ошибок, ни описок. Вы можете отказаться от самостоятельных вычислений, поскольку с прикладной точки зрения, нахождение определителя матрицы не имеет обучающего характера, а просто требует много времени и числовых вычислений. Поэтому если в вашей задачи определение детерминанта матрицы являются вспомогательными, побочными вычислениями, воспользуйтесь нашим сервисом и найдите определитель матрицы онлайн !

Все вычисления проводятся автоматически с высочайшей точностью и абсолютно бесплатны. У нас очень удобный интерфейс для ввода матричных элементов. Но главное отличие нашего сервиса от аналогичных - возможность получения подробного решения. Наш сервис при вычислении определителя матрицы онлайн всегда использует самый простой и короткий метод и подробно описывает каждый шаг преобразований и упрощений. Так что вы получаете не просто значение детерминанта матрицы, окончательный результат, но и целое подробное решение.

Матрица А -1 называется обратной матрицей по отношению к матрице А, если А*А -1 = Е, где Е - единичная матрица n -го порядка. Обратная матрица может существовать только для квадратных матриц.

Назначение сервиса . С помощью данного сервиса в онлайн режиме можно найти алгебраические дополнения , транспонированную матрицу A T , союзную матрицу и обратную матрицу. Решение проводится непосредственно на сайте (в онлайн режиме) и является бесплатным. Результаты вычислений оформляются в отчете формата Word и в формате Excel (т.е. имеется возможность проверить решение). см. пример оформления .

Инструкция . Для получения решения необходимо задать размерность матрицы. Далее в новом диалоговом окне заполните матрицу A .

См. также Обратная матрица методом Жордано-Гаусса

Алгоритм нахождения обратной матрицы

  1. Нахождение транспонированной матрицы A T .
  2. Определение алгебраических дополнений. Заменяют каждый элемент матрицы его алгебраическим дополнением.
  3. Составление обратной матрицы из алгебраических дополнений: каждый элемент полученной матрицы делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
Следующий алгоритм нахождения обратной матрицы аналогичен предыдущему за исключением некоторых шагов: сначала вычисляются алгебраические дополнения, а затем определяется союзная матрица C .
  1. Определяют, квадратная ли матрица. Если нет, то обратной матрицы для нее не существует.
  2. Вычисление определителя матрицы A . Если он не равен нулю, продолжаем решение, иначе - обратной матрицы не существует.
  3. Определение алгебраических дополнений.
  4. Заполнение союзной (взаимной, присоединённой) матрицы C .
  5. Составление обратной матрицы из алгебраических дополнений: каждый элемент присоединённой матрицы C делят на определитель исходной матрицы. Результирующая матрица является обратной для исходной матрицы.
  6. Делают проверку: перемножают исходную и полученную матрицы. В результате должна получиться единичная матрица.

Пример №1 . Запишем матрицу в виде:

Алгебраические дополнения. ∆ 1,2 = -(2·4-(-2·(-2))) = -4 ∆ 2,1 = -(2·4-5·3) = 7 ∆ 2,3 = -(-1·5-(-2·2)) = 1 ∆ 3,2 = -(-1·(-2)-2·3) = 4
A -1 =
0,6 -0,4 0,8
0,7 0,2 0,1
-0,1 0,4 -0,3

Другой алгоритм нахождения обратной матрицы

Приведем другую схему нахождения обратной матрицы.
  1. Находим определитель данной квадратной матрицы A .
  2. Находим алгебраические дополнения ко всем элементам матрицы A .
  3. Записываем алгебраические дополнения элементов строк в столбцы (транспонирование).
  4. Делим каждый элемент полученной матрицы на определитель матрицы A .
Как видим, операция транспонирования может применяться как в начале, над исходной матрицей, так и в конце, над полученными алгебраическими дополнениями.

Особый случай : Обратной, по отношению к единичной матрице E , является единичная матрица E .

Матрица $A^{-1}$ называется обратной по отношению к квадратной матрице $A$, если выполнено условие $A^{-1}\cdot A=A\cdot A^{-1}=E$, где $E$ – единичная матрица, порядок которой равен порядку матрицы $A$.

Невырожденная матрица – матрица, определитель которой не равен нулю. Соответственно, вырожденная матрица – та, у которой равен нулю определитель.

Обратная матрица $A^{-1}$ существует тогда и только тогда, когда матрица $A$ – невырожденная. Если обратная матрица $A^{-1}$ существует, то она единственная.

Есть несколько способов нахождения обратной матрицы, и мы рассмотрим два из них. На этой странице будет рассмотрен метод присоединённой матрицы, который полагается стандартным в большинстве курсов высшей математики. Второй способ нахождения обратной матрицы (метод элементарных преобразований), который предполагает использование метода Гаусса или метода Гаусса-Жордана, рассмотрен во второй части .

Метод присоединённой (союзной) матрицы

Пусть задана матрица $A_{n\times n}$. Для того, чтобы найти обратную матрицу $A^{-1}$, требуется осуществить три шага:

  1. Найти определитель матрицы $A$ и убедиться, что $\Delta A\neq 0$, т.е. что матрица А – невырожденная.
  2. Составить алгебраические дополнения $A_{ij}$ каждого элемента матрицы $A$ и записать матрицу $A_{n\times n}^{*}=\left(A_{ij} \right)$ из найденных алгебраических дополнений.
  3. Записать обратную матрицу с учетом формулы $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$.

Матрицу ${A^{*}}^T$ часто именуют присоединённой (взаимной, союзной) к матрице $A$.

Если решение происходит вручную, то первый способ хорош лишь для матриц сравнительно небольших порядков: второго (), третьего (), четвертого (). Чтобы найти обратную матрицу для матрицы высшего порядка, используются иные методы. Например, метод Гаусса, который рассмотрен во второй части .

Пример №1

Найти матрицу, обратную к матрице $A=\left(\begin{array} {cccc} 5 & -4 &1 & 0 \\ 12 &-11 &4 & 0 \\ -5 & 58 &4 & 0 \\ 3 & -1 & -9 & 0 \end{array} \right)$.

Так как все элементы четвёртого столбца равны нулю, то $\Delta A=0$ (т.е. матрица $A$ является вырожденной). Так как $\Delta A=0$, то обратной матрицы к матрице $A$ не существует.

Ответ : матрицы $A^{-1}$ не существует.

Пример №2

Найти матрицу, обратную к матрице $A=\left(\begin{array} {cc} -5 & 7 \\ 9 & 8 \end{array}\right)$. Выполнить проверку.

Используем метод присоединённой матрицы. Сначала найдем определитель заданной матрицы $A$:

$$ \Delta A=\left| \begin{array} {cc} -5 & 7\\ 9 & 8 \end{array}\right|=-5\cdot 8-7\cdot 9=-103. $$

Так как $\Delta A \neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения

\begin{aligned} & A_{11}=(-1)^2\cdot 8=8; \; A_{12}=(-1)^3\cdot 9=-9;\\ & A_{21}=(-1)^3\cdot 7=-7; \; A_{22}=(-1)^4\cdot (-5)=-5.\\ \end{aligned}

Составляем матрицу из алгебраических дополнений: $A^{*}=\left(\begin{array} {cc} 8 & -9\\ -7 & -5 \end{array}\right)$.

Транспонируем полученную матрицу: ${A^{*}}^T=\left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$ (полученная матрица часто именуется присоединённой или союзной матрицей к матрице $A$). Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, имеем:

$$ A^{-1}=\frac{1}{-103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right) =\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right) $$

Итак, обратная матрица найдена: $A^{-1}=\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A^{-1}\cdot A=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$, а в виде $-\frac{1}{103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)$:

$$ A^{-1}\cdot{A} =-\frac{1}{103}\cdot \left(\begin{array} {cc} 8 & -7\\ -9 & -5 \end{array}\right)\cdot\left(\begin{array} {cc} -5 & 7 \\ 9 & 8 \end{array}\right) =-\frac{1}{103}\cdot\left(\begin{array} {cc} -103 & 0 \\ 0 & -103 \end{array}\right) =\left(\begin{array} {cc} 1 & 0 \\ 0 & 1 \end{array}\right) =E $$

Ответ : $A^{-1}=\left(\begin{array} {cc} -8/103 & 7/103\\ 9/103 & 5/103 \end{array}\right)$.

Пример №3

Найти обратную матрицу для матрицы $A=\left(\begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right)$. Выполнить проверку.

Начнём с вычисления определителя матрицы $A$. Итак, определитель матрицы $A$ таков:

$$ \Delta A=\left| \begin{array} {ccc} 1 & 7 & 3 \\ -4 & 9 & 4 \\ 0 & 3 & 2\end{array} \right| = 18-36+56-12=26. $$

Так как $\Delta A\neq 0$, то обратная матрица существует, посему продолжим решение. Находим алгебраические дополнения каждого элемента заданной матрицы:

$$ \begin{aligned} & A_{11}=(-1)^{2}\cdot\left|\begin{array}{cc} 9 & 4\\ 3 & 2\end{array}\right|=6;\; A_{12}=(-1)^{3}\cdot\left|\begin{array}{cc} -4 &4 \\ 0 & 2\end{array}\right|=8;\; A_{13}=(-1)^{4}\cdot\left|\begin{array}{cc} -4 & 9\\ 0 & 3\end{array}\right|=-12;\\ & A_{21}=(-1)^{3}\cdot\left|\begin{array}{cc} 7 & 3\\ 3 & 2\end{array}\right|=-5;\; A_{22}=(-1)^{4}\cdot\left|\begin{array}{cc} 1 & 3\\ 0 & 2\end{array}\right|=2;\; A_{23}=(-1)^{5}\cdot\left|\begin{array}{cc} 1 & 7\\ 0 & 3\end{array}\right|=-3;\\ & A_{31}=(-1)^{4}\cdot\left|\begin{array}{cc} 7 & 3\\ 9 & 4\end{array}\right|=1;\; A_{32}=(-1)^{5}\cdot\left|\begin{array}{cc} 1 & 3\\ -4 & 4\end{array}\right|=-16;\; A_{33}=(-1)^{6}\cdot\left|\begin{array}{cc} 1 & 7\\ -4 & 9\end{array}\right|=37. \end{aligned} $$

Составляем матрицу из алгебраических дополнений и транспонируем её:

$$ A^*=\left(\begin{array} {ccc} 6 & 8 & -12 \\ -5 & 2 & -3 \\ 1 & -16 & 37\end{array} \right); \; {A^*}^T=\left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right). $$

Используя формулу $A^{-1}=\frac{1}{\Delta A}\cdot {A^{*}}^T$, получим:

$$ A^{-1}=\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)= \left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right) $$

Итак, $A^{-1}=\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$. Чтобы проверить истинность результата, достаточно проверить истинность одного из равенств: $A^{-1}\cdot A=E$ или $A\cdot A^{-1}=E$. Проверим выполнение равенства $A\cdot A^{-1}=E$. Дабы поменьше работать с дробями, будем подставлять матрицу $A^{-1}$ не в форме $\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$, а в виде $\frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right)$:

$$ A\cdot{A^{-1}} =\left(\begin{array}{ccc} 1 & 7 & 3 \\ -4 & 9 & 4\\ 0 & 3 & 2\end{array} \right)\cdot \frac{1}{26}\cdot \left(\begin{array} {ccc} 6 & -5 & 1 \\ 8 & 2 & -16 \\ -12 & -3 & 37\end{array} \right) =\frac{1}{26}\cdot\left(\begin{array} {ccc} 26 & 0 & 0 \\ 0 & 26 & 0 \\ 0 & 0 & 26\end{array} \right) =\left(\begin{array} {ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array} \right) =E $$

Проверка пройдена успешно, обратная матрица $A^{-1}$ найдена верно.

Ответ : $A^{-1}=\left(\begin{array} {ccc} 3/13 & -5/26 & 1/26 \\ 4/13 & 1/13 & -8/13 \\ -6/13 & -3/26 & 37/26 \end{array} \right)$.

Пример №4

Найти матрицу, обратную матрице $A=\left(\begin{array} {cccc} 6 & -5 & 8 & 4\\ 9 & 7 & 5 & 2 \\ 7 & 5 & 3 & 7\\ -4 & 8 & -8 & -3 \end{array} \right)$.

Для матрицы четвёртого порядка нахождение обратной матрицы с помощью алгебраических дополнений несколько затруднительно. Однако такие примеры в контрольных работах встречаются.

Чтобы найти обратную матрицу, для начала нужно вычислить определитель матрицы $A$. Лучше всего в данной ситуации это сделать с помощью разложения определителя по строке (столбцу) . Выбираем любую строку или столбец и находим алгебраические дополнения каждого элемента избранной строки или столбца.

Например, для первой строки получим:

$$ A_{11}=\left|\begin{array}{ccc} 7 & 5 & 2\\ 5 & 3 & 7\\ 8 & -8 & -3 \end{array}\right|=556;\; A_{12}=-\left|\begin{array}{ccc} 9 & 5 & 2\\ 7 & 3 & 7 \\ -4 & -8 & -3 \end{array}\right|=-300; $$ $$ A_{13}=\left|\begin{array}{ccc} 9 & 7 & 2\\ 7 & 5 & 7\\ -4 & 8 & -3 \end{array}\right|=-536;\; A_{14}=-\left|\begin{array}{ccc} 9 & 7 & 5\\ 7 & 5 & 3\\ -4 & 8 & -8 \end{array}\right|=-112. $$

Определитель матрицы $A$ вычислим по следующей формуле:

$$ \Delta{A}=a_{11}\cdot A_{11}+a_{12}\cdot A_{12}+a_{13}\cdot A_{13}+a_{14}\cdot A_{14}=6\cdot 556+(-5)\cdot(-300)+8\cdot(-536)+4\cdot(-112)=100. $$

$$ \begin{aligned} & A_{21}=-77;\;A_{22}=50;\;A_{23}=87;\;A_{24}=4;\\ & A_{31}=-93;\;A_{32}=50;\;A_{33}=83;\;A_{34}=36;\\ & A_{41}=473;\;A_{42}=-250;\;A_{43}=-463;\;A_{44}=-96. \end{aligned} $$

Матрица из алгебраических дополнений: $A^*=\left(\begin{array}{cccc} 556 & -300 & -536 & -112\\ -77 & 50 & 87 & 4 \\ -93 & 50 & 83 & 36\\ 473 & -250 & -463 & -96\end{array}\right)$.

Присоединённая матрица: ${A^*}^T=\left(\begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96\end{array}\right)$.

Обратная матрица:

$$ A^{-1}=\frac{1}{100}\cdot \left(\begin{array} {cccc} 556 & -77 & -93 & 473\\ -300 & 50 & 50 & -250 \\ -536 & 87 & 83 & -463\\ -112 & 4 & 36 & -96 \end{array} \right)= \left(\begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right) $$

Проверка, при желании, может быть произведена так же, как и в предыдущих примерах.

Ответ : $A^{-1}=\left(\begin{array} {cccc} 139/25 & -77/100 & -93/100 & 473/100 \\ -3 & 1/2 & 1/2 & -5/2 \\ -134/25 & 87/100 & 83/100 & -463/100 \\ -28/25 & 1/25 & 9/25 & -24/25 \end{array} \right)$.

Во второй части будет рассмотрен иной способ нахождения обратной матрицы, который предполагает использование преобразований метода Гаусса или метода Гаусса-Жордана.


Да, да: арифметическая прогрессия — это вам не игрушки:)

Что ж, друзья, если вы читаете этот текст, то внутренний кэп-очевидность подсказывает мне, что вы пока ещё не знаете, что такое арифметическая прогрессия, но очень (нет, вот так: ОООООЧЕНЬ!) хотите узнать. Поэтому не буду мучать вас длинными вступлениями и сразу перейду к делу.

Для начала парочка примеров. Рассмотрим несколько наборов чисел:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt{2};\ 2\sqrt{2};\ 3\sqrt{2};...$

Что общего у всех этих наборов? На первый взгляд — ничего. Но на самом деле кое-что есть. А именно: каждый следующий элемент отличается от предыдущего на одно и то же число .

Судите сами. Первый набор — это просто идущие подряд числа, каждое следующее на единицу больше предыдущего. Во втором случае разница между рядом стоящими числами уже равна пяти, но эта разница всё равно постоянна. В третьем случае вообще корни. Однако $2\sqrt{2}=\sqrt{2}+\sqrt{2}$, а $3\sqrt{2}=2\sqrt{2}+\sqrt{2}$, т.е. и в этом случае каждый следующий элемент просто возрастает на $\sqrt{2}$ (и пусть вас не пугает, что это число — иррациональное).

Так вот: все такие последовательности как раз и называются арифметическими прогрессиями. Дадим строгое определение:

Определение. Последовательность чисел, в которой каждое следующее отличается от предыдущего ровно на одну и ту же величину, называется арифметической прогрессией. Сама величина, на которую отличаются числа, называется разностью прогрессии и чаще всего обозначается буквой $d$.

Обозначение: $\left({{a}_{n}} \right)$ — сама прогрессия, $d$ — её разность.

И сразу парочка важных замечаний. Во-первых, прогрессией считается лишь упорядоченная последовательность чисел: их разрешено читать строго в том порядке, в котором они записаны — и никак иначе. Переставлять и менять местами числа нельзя.

Во-вторых, сама последовательность может являться как конечной, так и бесконечной. К примеру, набор {1; 2; 3} — это, очевидно, конечная арифметическая прогрессия. Но если записать что-нибудь в духе {1; 2; 3; 4; ...} — это уже бесконечная прогрессия. Многоточие после четвёрки как бы намекает, что дальше идёт ещё довольно много чисел. Бесконечно много, например.:)

Ещё хотел бы отметить, что прогрессии бывают возрастающими и убывающими. Возрастающие мы уже видели — тот же набор {1; 2; 3; 4; ...}. А вот примеры убывающих прогрессий:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt{5};\ \sqrt{5}-1;\ \sqrt{5}-2;\ \sqrt{5}-3;...$

Ладно, ладно: последний пример может показаться чересчур сложным. Но остальные, думаю, вам понятны. Поэтому введём новые определения:

Определение. Арифметическая прогрессия называется:

  1. возрастающей, если каждый следующий элемент больше предыдущего;
  2. убывающей, если, напротив, каждый последующий элемент меньше предыдущего.

Кроме того, существуют так называемые «стационарные» последовательности — они состоят из одного и того же повторяющегося числа. Например, {3; 3; 3; ...}.

Остаётся лишь один вопрос: как отличить возрастающую прогрессию от убывающей? К счастью, тут всё зависит лишь от того, каков знак числа $d$, т.е. разности прогрессии:

  1. Если $d \gt 0$, то прогрессия возрастает;
  2. Если $d \lt 0$, то прогрессия, очевидно, убывает;
  3. Наконец, есть случай $d=0$ — в этом случае вся прогрессия сводится к стационарной последовательности одинаковых чисел: {1; 1; 1; 1; ...} и т.д.

Попробуем рассчитать разность $d$ для трёх убывающих прогрессий, приведённых выше. Для этого достаточно взять любые два соседних элемента (например, первый и второй) и вычесть из числа, стоящего справа, число, стоящее слева. Выглядеть это будет вот так:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt{5}-1-\sqrt{5}=-1$.

Как видим, во всех трёх случаях разность действительно получилась отрицательной. И теперь, когда мы более-менее разобрались с определениями, пора разобраться с тем, как описываются прогрессии и какие у них свойства.

Члены прогрессии и рекуррентная формула

Поскольку элементы наших последовательностей нельзя менять местами, их можно пронумеровать:

\[\left({{a}_{n}} \right)=\left\{ {{a}_{1}},\ {{a}_{2}},{{a}_{3}},... \right\}\]

Отдельные элементы этого набора называются членами прогрессии. На них так и указывают с помощью номера: первый член, второй член и т.д.

Кроме того, как мы уже знаем, соседние члены прогрессии связаны формулой:

\[{{a}_{n}}-{{a}_{n-1}}=d\Rightarrow {{a}_{n}}={{a}_{n-1}}+d\]

Короче говоря, чтобы найти $n$-й член прогрессии, нужно знать $n-1$-й член и разность $d$. Такая формула называется рекуррентной, поскольку с её помощью можно найти любое число, лишь зная предыдущее (а по факту — все предыдущие). Это очень неудобно, поэтому существует более хитрая формула, которая сводит любые вычисления к первому члену и разности:

\[{{a}_{n}}={{a}_{1}}+\left(n-1 \right)d\]

Наверняка вы уже встречались с этой формулой. Её любят давать во всяких справочниках и решебниках. Да и в любом толковом учебнике по математике она идёт одной из первых.

Тем не менее предлагаю немного потренироваться.

Задача №1. Выпишите первые три члена арифметической прогрессии $\left({{a}_{n}} \right)$, если ${{a}_{1}}=8,d=-5$.

Решение. Итак, нам известен первый член ${{a}_{1}}=8$ и разность прогрессии $d=-5$. Воспользуемся только что приведённой формулой и подставим $n=1$, $n=2$ и $n=3$:

\[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)d; \\ & {{a}_{1}}={{a}_{1}}+\left(1-1 \right)d={{a}_{1}}=8; \\ & {{a}_{2}}={{a}_{1}}+\left(2-1 \right)d={{a}_{1}}+d=8-5=3; \\ & {{a}_{3}}={{a}_{1}}+\left(3-1 \right)d={{a}_{1}}+2d=8-10=-2. \\ \end{align}\]

Ответ: {8; 3; −2}

Вот и всё! Обратите внимание: наша прогрессия — убывающая.

Конечно, $n=1$ можно было и не подставлять — первый член нам и так известен. Впрочем, подставив единицу, мы убедились, что даже для первого члена наша формула работает. В остальных случаях всё свелось к банальной арифметике.

Задача №2. Выпишите первые три члена арифметической прогрессии, если её седьмой член равен −40, а семнадцатый член равен −50.

Решение. Запишем условие задачи в привычных терминах:

\[{{a}_{7}}=-40;\quad {{a}_{17}}=-50.\]

\[\left\{ \begin{align} & {{a}_{7}}={{a}_{1}}+6d \\ & {{a}_{17}}={{a}_{1}}+16d \\ \end{align} \right.\]

\[\left\{ \begin{align} & {{a}_{1}}+6d=-40 \\ & {{a}_{1}}+16d=-50 \\ \end{align} \right.\]

Знак системы я поставил потому, что эти требования должны выполняться одновременно. А теперь заметим, если вычесть из второго уравнения первое (мы имеем право это сделать, т.к. у нас система), то получим вот что:

\[\begin{align} & {{a}_{1}}+16d-\left({{a}_{1}}+6d \right)=-50-\left(-40 \right); \\ & {{a}_{1}}+16d-{{a}_{1}}-6d=-50+40; \\ & 10d=-10; \\ & d=-1. \\ \end{align}\]

Вот так просто мы нашли разность прогрессии! Осталось подставить найденное число в любое из уравнений системы. Например, в первое:

\[\begin{matrix} {{a}_{1}}+6d=-40;\quad d=-1 \\ \Downarrow \\ {{a}_{1}}-6=-40; \\ {{a}_{1}}=-40+6=-34. \\ \end{matrix}\]

Теперь, зная первый член и разность, осталось найти второй и третий член:

\[\begin{align} & {{a}_{2}}={{a}_{1}}+d=-34-1=-35; \\ & {{a}_{3}}={{a}_{1}}+2d=-34-2=-36. \\ \end{align}\]

Готово! Задача решена.

Ответ: {−34; −35; −36}

Обратите внимание на любопытное свойство прогрессии, которое мы обнаружили: если взять $n$-й и $m$-й члены и вычесть их друг из друга, то мы получим разность прогрессии, умноженную на число $n-m$:

\[{{a}_{n}}-{{a}_{m}}=d\cdot \left(n-m \right)\]

Простое, но очень полезное свойство, которое обязательно надо знать — с его помощью можно значительно ускорить решение многих задач по прогрессиям. Вот яркий тому пример:

Задача №3. Пятый член арифметической прогрессии равен 8,4, а её десятый член равен 14,4. Найдите пятнадцатый член этой прогрессии.

Решение. Поскольку ${{a}_{5}}=8,4$, ${{a}_{10}}=14,4$, а нужно найти ${{a}_{15}}$, то заметим следующее:

\[\begin{align} & {{a}_{15}}-{{a}_{10}}=5d; \\ & {{a}_{10}}-{{a}_{5}}=5d. \\ \end{align}\]

Но по условию ${{a}_{10}}-{{a}_{5}}=14,4-8,4=6$, поэтому $5d=6$, откуда имеем:

\[\begin{align} & {{a}_{15}}-14,4=6; \\ & {{a}_{15}}=6+14,4=20,4. \\ \end{align}\]

Ответ: 20,4

Вот и всё! Нам не потребовалось составлять какие-то системы уравнений и считать первый член и разность — всё решилось буквально в пару строчек.

Теперь рассмотрим другой вид задач — на поиск отрицательных и положительных членов прогрессии. Не секрет, что если прогрессия возрастает, при этом первый член у неё отрицательный, то рано или поздно в ней появятся положительные члены. И напротив: члены убывающей прогрессии рано или поздно станут отрицательными.

При этом далеко не всегда можно нащупать этот момент «в лоб», последовательно перебирая элементы. Зачастую задачи составлены так, что без знания формул вычисления заняли бы несколько листов — мы просто уснули бы, пока нашли ответ. Поэтому попробуем решить эти задачи более быстрым способом.

Задача №4. Сколько отрицательных членов в арифметической прогрессии −38,5; −35,8; …?

Решение. Итак, ${{a}_{1}}=-38,5$, ${{a}_{2}}=-35,8$, откуда сразу находим разность:

Заметим, что разность положительна, поэтому прогрессия возрастает. Первый член отрицателен, поэтому действительно в какой-то момент мы наткнёмся на положительные числа. Вопрос лишь в том, когда это произойдёт.

Попробуем выяснить: до каких пор (т.е. до какого натурального числа $n$) сохраняется отрицательность членов:

\[\begin{align} & {{a}_{n}} \lt 0\Rightarrow {{a}_{1}}+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac{7}{27}\Rightarrow {{n}_{\max }}=15. \\ \end{align}\]

Последняя строчка требует пояснения. Итак, нам известно, что $n \lt 15\frac{7}{27}$. С другой стороны, нас устроят лишь целые значения номера (более того: $n\in \mathbb{N}$), поэтому наибольший допустимый номер — это именно $n=15$, а ни в коем случае не 16.

Задача №5. В арифметической прогрессии ${{}_{5}}=-150,{{}_{6}}=-147$. Найдите номер первого положительного члена этой прогрессии.

Это была бы точь-в-точь такая же задача, как и предыдущая, однако нам неизвестно ${{a}_{1}}$. Зато известны соседние члены: ${{a}_{5}}$ и ${{a}_{6}}$, поэтому мы легко найдём разность прогрессии:

Кроме того, попробуем выразить пятый член через первый и разность по стандартной формуле:

\[\begin{align} & {{a}_{n}}={{a}_{1}}+\left(n-1 \right)\cdot d; \\ & {{a}_{5}}={{a}_{1}}+4d; \\ & -150={{a}_{1}}+4\cdot 3; \\ & {{a}_{1}}=-150-12=-162. \\ \end{align}\]

Теперь поступаем по аналогии с предыдущей задачей. Выясняем, в какой момент в нашей последовательности возникнут положительные числа:

\[\begin{align} & {{a}_{n}}=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow {{n}_{\min }}=56. \\ \end{align}\]

Минимальное целочисленное решение данного неравенства — число 56.

Обратите внимание: в последнем задании всё свелось к строгому неравенству, поэтому вариант $n=55$ нас не устроит.

Теперь, когда мы научились решать простые задачи, перейдём к более сложным. Но для начала давайте изучим ещё одно очень полезное свойство арифметических прогрессий, которое в будущем сэкономит нам кучу времени и неравных клеток.:)

Среднее арифметическое и равные отступы

Рассмотрим несколько последовательных членов возрастающей арифметической прогрессии $\left({{a}_{n}} \right)$. Попробуем отметить их на числовой прямой:

Члены арифметической прогрессии на числовой прямой

Я специально отметил произвольные члены ${{a}_{n-3}},...,{{a}_{n+3}}$, а не какие-нибудь ${{a}_{1}},\ {{a}_{2}},\ {{a}_{3}}$ и т.д. Потому что правило, о котором я сейчас расскажу, одинаково работает для любых «отрезков».

А правило очень простое. Давайте вспомним рекуррентную формулу и запишем её для всех отмеченных членов:

\[\begin{align} & {{a}_{n-2}}={{a}_{n-3}}+d; \\ & {{a}_{n-1}}={{a}_{n-2}}+d; \\ & {{a}_{n}}={{a}_{n-1}}+d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n+1}}+d; \\ \end{align}\]

Однако эти равенства можно переписать иначе:

\[\begin{align} & {{a}_{n-1}}={{a}_{n}}-d; \\ & {{a}_{n-2}}={{a}_{n}}-2d; \\ & {{a}_{n-3}}={{a}_{n}}-3d; \\ & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{n+3}}={{a}_{n}}+3d; \\ \end{align}\]

Ну и что с того? А то, что члены ${{a}_{n-1}}$ и ${{a}_{n+1}}$ лежат на одном и том же расстоянии от ${{a}_{n}}$. И это расстояние равно $d$. То же самое можно сказать про члены ${{a}_{n-2}}$ и ${{a}_{n+2}}$ — они тоже удалены от ${{a}_{n}}$ на одинаковое расстояние, равное $2d$. Продолжать можно до бесконечности, но смысл хорошо иллюстрирует картинка


Члены прогрессии лежат на одинаковом расстоянии от центра

Что это значит для нас? Это значит, что можно найти ${{a}_{n}}$, если известны числа-соседи:

\[{{a}_{n}}=\frac{{{a}_{n-1}}+{{a}_{n+1}}}{2}\]

Мы вывели великолепное утверждение: всякий член арифметической прогрессии равен среднему арифметическому соседних членов! Более того: мы можем отступить от нашего ${{a}_{n}}$ влево и вправо не на один шаг, а на $k$ шагов — и всё равно формула будет верна:

\[{{a}_{n}}=\frac{{{a}_{n-k}}+{{a}_{n+k}}}{2}\]

Т.е. мы спокойно можем найти какое-нибудь ${{a}_{150}}$, если знаем ${{a}_{100}}$ и ${{a}_{200}}$, потому что ${{a}_{150}}=\frac{{{a}_{100}}+{{a}_{200}}}{2}$. На первый взгляд может показаться, что данный факт не даёт нам ничего полезного. Однако на практике многие задачи специально «заточены» под использование среднего арифметического. Взгляните:

Задача №6. Найдите все значения $x$, при которых числа $-6{{x}^{2}}$, $x+1$ и $14+4{{x}^{2}}$ являются последовательными членами арифметической прогрессии (в указанном порядке).

Решение. Поскольку указанные числа являются членами прогрессии, для них выполняется условие среднего арифметического: центральный элемент $x+1$ можно выразить через соседние элементы:

\[\begin{align} & x+1=\frac{-6{{x}^{2}}+14+4{{x}^{2}}}{2}; \\ & x+1=\frac{14-2{{x}^{2}}}{2}; \\ & x+1=7-{{x}^{2}}; \\ & {{x}^{2}}+x-6=0. \\ \end{align}\]

Получилось классическое квадратное уравнение. Его корни: $x=2$ и $x=-3$ — это и есть ответы.

Ответ: −3; 2.

Задача №7. Найдите значения $$, при которых числа $-1;4-3;{{}^{2}}+1$ составляют арифметическую прогрессию (в указанном порядке).

Решение. Опять выразим средний член через среднее арифметическое соседних членов:

\[\begin{align} & 4x-3=\frac{x-1+{{x}^{2}}+1}{2}; \\ & 4x-3=\frac{{{x}^{2}}+x}{2};\quad \left| \cdot 2 \right.; \\ & 8x-6={{x}^{2}}+x; \\ & {{x}^{2}}-7x+6=0. \\ \end{align}\]

Снова квадратное уравнение. И снова два корня: $x=6$ и$x=1$.

Ответ: 1; 6.

Если в процессе решения задачи у вас вылезают какие-то зверские числа, либо вы не до конца уверены в правильности найденных ответов, то есть замечательный приём, позволяющий проверить: правильно ли мы решили задачу?

Допустим, в задаче №6 мы получили ответы −3 и 2. Как проверить, что эти ответы верны? Давайте просто подставим их в исходное условие и посмотрим, что получится. Напомню, что у нас есть три числа ($-6{{}^{2}}$, $+1$ и $14+4{{}^{2}}$), которые должны составлять арифметическую прогрессию. Подставим $x=-3$:

\[\begin{align} & x=-3\Rightarrow \\ & -6{{x}^{2}}=-54; \\ & x+1=-2; \\ & 14+4{{x}^{2}}=50. \end{align}\]

Получили числа −54; −2; 50, которые отличаются на 52 — несомненно, это арифметическая прогрессия. То же самое происходит и при $x=2$:

\[\begin{align} & x=2\Rightarrow \\ & -6{{x}^{2}}=-24; \\ & x+1=3; \\ & 14+4{{x}^{2}}=30. \end{align}\]

Опять прогрессия, но с разностью 27. Таким образом, задача решена верно. Желающие могут проверить вторую задачу самостоятельно, но сразу скажу: там тоже всё верно.

В целом, решая последние задачи, мы наткнулись на ещё один интересный факт, который тоже необходимо запомнить:

Если три числа таковы, что второе является средним арифметическим первого и последнего, то эти числа образуют арифметическую прогрессию.

В будущем понимание этого утверждения позволит нам буквально «конструировать» нужные прогрессии, опираясь на условие задачи. Но прежде чем мы займёмся подобным «конструированием», следует обратить внимание на ещё один факт, который прямо следует из уже рассмотренного.

Группировка и сумма элементов

Давайте ещё раз вернёмся к числовой оси. Отметим там несколько членов прогрессии, между которыми, возможно. стоит очень много других членов:

На числовой прямой отмечены 6 элементов

Попробуем выразить «левый хвост» через ${{a}_{n}}$ и $d$, а «правый хвост» через ${{a}_{k}}$ и $d$. Это очень просто:

\[\begin{align} & {{a}_{n+1}}={{a}_{n}}+d; \\ & {{a}_{n+2}}={{a}_{n}}+2d; \\ & {{a}_{k-1}}={{a}_{k}}-d; \\ & {{a}_{k-2}}={{a}_{k}}-2d. \\ \end{align}\]

А теперь заметим, что равны следующие суммы:

\[\begin{align} & {{a}_{n}}+{{a}_{k}}=S; \\ & {{a}_{n+1}}+{{a}_{k-1}}={{a}_{n}}+d+{{a}_{k}}-d=S; \\ & {{a}_{n+2}}+{{a}_{k-2}}={{a}_{n}}+2d+{{a}_{k}}-2d=S. \end{align}\]

Проще говоря, если мы рассмотрим в качестве старта два элемента прогрессии, которые в сумме равны какому-нибудь числу $S$, а затем начнём шагать от этих элементов в противоположные стороны (навстречу друг другу или наоборот на удаление), то суммы элементов, на которые мы будем натыкаться, тоже будут равны $S$. Наиболее наглядно это можно представить графически:


Одинаковые отступы дают равные суммы

Понимание данного факта позволит нам решать задачи принципиально более высокого уровня сложности, нежели те, что мы рассматривали выше. Например, такие:

Задача №8. Определите разность арифметической прогрессии, в которой первый член равен 66, а произведение второго и двенадцатого членов является наименьшим из возможных.

Решение. Запишем всё, что нам известно:

\[\begin{align} & {{a}_{1}}=66; \\ & d=? \\ & {{a}_{2}}\cdot {{a}_{12}}=\min . \end{align}\]

Итак, нам неизвестна разность прогрессии $d$. Собственно, вокруг разности и будет строиться всё решение, поскольку произведение ${{a}_{2}}\cdot {{a}_{12}}$ можно переписать следующим образом:

\[\begin{align} & {{a}_{2}}={{a}_{1}}+d=66+d; \\ & {{a}_{12}}={{a}_{1}}+11d=66+11d; \\ & {{a}_{2}}\cdot {{a}_{12}}=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11\cdot \left(d+66 \right)\cdot \left(d+6 \right). \end{align}\]

Для тех, кто в танке: я вынес общий множитель 11 из второй скобки. Таким образом, искомое произведение представляет собой квадратичную функцию относительно переменной $d$. Поэтому рассмотрим функцию $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ — её графиком будет парабола ветвями вверх, т.к. если раскрыть скобки, то мы получим:

\[\begin{align} & f\left(d \right)=11\left({{d}^{2}}+66d+6d+66\cdot 6 \right)= \\ & =11{{d}^{2}}+11\cdot 72d+11\cdot 66\cdot 6 \end{align}\]

Как видим, коэффициент при старшем слагаемом равен 11 — это положительное число, поэтому действительно имеем дело с параболой ветвями вверх:


график квадратичной функции — парабола

Обратите внимание: минимальное значение эта парабола принимает в своей вершине с абсциссой ${{d}_{0}}$. Конечно, мы можем посчитать эту абсциссу по стандартной схеме (есть же формула ${{d}_{0}}={-b}/{2a}\;$), но куда разумнее будет заметить, что искомая вершина лежит на оси симметрии параболы, поэтому точка ${{d}_{0}}$ равноудалена от корней уравнения $f\left(d \right)=0$:

\[\begin{align} & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & {{d}_{1}}=-66;\quad {{d}_{2}}=-6. \\ \end{align}\]

Именно поэтому я не особо спешил раскрывать скобки: в исходном виде корни было найти очень и очень просто. Следовательно, абсцисса равна среднему арифметическому чисел −66 и −6:

\[{{d}_{0}}=\frac{-66-6}{2}=-36\]

Что даёт нам обнаруженное число? При нём требуемое произведение принимает наименьшее значение (мы, кстати, так и не посчитали ${{y}_{\min }}$ — от нас это не требуется). Одновременно это число является разностью исходной прогрессии, т.е. мы нашли ответ.:)

Ответ: −36

Задача №9. Между числами $-\frac{1}{2}$ и $-\frac{1}{6}$ вставьте три числа так, чтобы они вместе с данными числами составили арифметическую прогрессию.

Решение. По сути, нам нужно составить последовательность из пяти чисел, причём первое и последнее число уже известно. Обозначим недостающие числа переменными $x$, $y$ и $z$:

\[\left({{a}_{n}} \right)=\left\{ -\frac{1}{2};x;y;z;-\frac{1}{6} \right\}\]

Отметим, что число $y$ является «серединой» нашей последовательности — оно равноудалено и от чисел $x$ и $z$, и от чисел $-\frac{1}{2}$ и $-\frac{1}{6}$. И если из чисел $x$ и $z$ мы в данный момент не можем получить $y$, то вот с концами прогрессии дело обстоит иначе. Вспоминаем про среднее арифметическое:

Теперь, зная $y$, мы найдём оставшиеся числа. Заметим, что $x$ лежит между числами $-\frac{1}{2}$ и только что найденным $y=-\frac{1}{3}$. Поэтому

Аналогично рассуждая, находим оставшееся число:

Готово! Мы нашли все три числа. Запишем их в ответе в том порядке, в котором они должны быть вставлены между исходными числами.

Ответ: $-\frac{5}{12};\ -\frac{1}{3};\ -\frac{1}{4}$

Задача №10. Между числами 2 и 42 вставьте несколько чисел, которые вместе с данными числами образуют арифметическую прогрессию, если известно, что сумма первого, второго и последнего из вставленных чисел равна 56.

Решение. Ещё более сложная задача, которая, однако, решается по той же схеме, что и предыдущие — через среднее арифметическое. Проблема в том, что нам неизвестно, сколько конкретно чисел надо вставить. Поэтому положим для опредлённости, что после вставки всего будет ровно $n$ чисел, причём первое из них — это 2, а последнее — 42. В этом случае искомая арифметическая прогрессия представима в виде:

\[\left({{a}_{n}} \right)=\left\{ 2;{{a}_{2}};{{a}_{3}};...;{{a}_{n-1}};42 \right\}\]

\[{{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56\]

Заметим, однако, что числа ${{a}_{2}}$ и ${{a}_{n-1}}$ получаются из стоящих по краям чисел 2 и 42 путём одного шага навстречу друг другу, т.е. к центру последовательности. А это значит, что

\[{{a}_{2}}+{{a}_{n-1}}=2+42=44\]

Но тогда записанное выше выражение можно переписать так:

\[\begin{align} & {{a}_{2}}+{{a}_{3}}+{{a}_{n-1}}=56; \\ & \left({{a}_{2}}+{{a}_{n-1}} \right)+{{a}_{3}}=56; \\ & 44+{{a}_{3}}=56; \\ & {{a}_{3}}=56-44=12. \\ \end{align}\]

Зная ${{a}_{3}}$ и ${{a}_{1}}$, мы легко найдём разность прогрессии:

\[\begin{align} & {{a}_{3}}-{{a}_{1}}=12-2=10; \\ & {{a}_{3}}-{{a}_{1}}=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end{align}\]

Осталось лишь найти остальные члены:

\[\begin{align} & {{a}_{1}}=2; \\ & {{a}_{2}}=2+5=7; \\ & {{a}_{3}}=12; \\ & {{a}_{4}}=2+3\cdot 5=17; \\ & {{a}_{5}}=2+4\cdot 5=22; \\ & {{a}_{6}}=2+5\cdot 5=27; \\ & {{a}_{7}}=2+6\cdot 5=32; \\ & {{a}_{8}}=2+7\cdot 5=37; \\ & {{a}_{9}}=2+8\cdot 5=42; \\ \end{align}\]

Таким образом, уже на 9-м шаге мы придём в левый конец последовательности — число 42. Итого нужно было вставить лишь 7 чисел: 7; 12; 17; 22; 27; 32; 37.

Ответ: 7; 12; 17; 22; 27; 32; 37

Текстовые задачи с прогрессиями

В заключение хотелось бы рассмотреть парочку относительно простых задач. Ну, как простых: для большинства учеников, которые изучают математику в школе и не читали того, что написано выше, эти задачи могут показаться жестью. Тем не менее именно такие задачи попадаются в ОГЭ и ЕГЭ по математике, поэтому рекомендую ознакомиться с ними.

Задача №11. Бригада изготовила в январе 62 детали, а в каждый следующий месяц изготовляла на 14 деталей больше, чем в предыдущий. Сколько деталей изготовила бригада в ноябре?

Решение. Очевидно, количество деталей, расписанное по месяцам, будет представлять собой возрастающую арифметическую прогрессию. Причём:

\[\begin{align} & {{a}_{1}}=62;\quad d=14; \\ & {{a}_{n}}=62+\left(n-1 \right)\cdot 14. \\ \end{align}\]

Ноябрь — это 11-й месяц в году, поэтому нам нужно найти ${{a}_{11}}$:

\[{{a}_{11}}=62+10\cdot 14=202\]

Следовательно, в ноябре будет изготовлено 202 детали.

Задача №12. Переплётная мастерская переплела в январе 216 книг, а в каждый следующий месяц она переплетала на 4 книги больше, чем в предыдущий. Сколько книг переплела мастерская в декабре?

Решение. Всё то же самое:

$\begin{align} & {{a}_{1}}=216;\quad d=4; \\ & {{a}_{n}}=216+\left(n-1 \right)\cdot 4. \\ \end{align}$

Декабрь — это последний, 12-й месяц в году, поэтому ищем ${{a}_{12}}$:

\[{{a}_{12}}=216+11\cdot 4=260\]

Это и есть ответ — 260 книг будет переплетено в декабре.

Что ж, если вы дочитали до сюда, спешу вас поздравить: «курс молодого бойца» по арифметическим прогрессиям вы успешно прошли. Можно смело переходить к следующему уроку, где мы изучим формулу суммы прогрессии, а также важные и очень полезные следствия из неё.

При изучении алгебры в общеобразовательной школе (9 класс) одной из важных тем является изучение числовых последовательностей, к которым относятся прогрессии -геометрическая и арифметическая. В данной статье рассмотрим арифметическую прогрессию и примеры с решениями.

Что собой представляет арифметическая прогрессия?

Чтобы это понять, необходимо дать определение рассматриваемой прогрессии, а также привести основные формулы, которые далее будут использованы при решении задач.

Арифметическая или алгебраическая прогрессия - это такой набор упорядоченных рациональных чисел, каждый член которого отличается от предыдущего на некоторую постоянную величину. Эта величина называется разностью. То есть, зная любой член упорядоченного ряда чисел и разность, можно восстановить всю арифметическую прогрессию.

Приведем пример. Следующая последовательность чисел будет прогрессией арифметической: 4, 8, 12, 16, ..., поскольку разность в этом случае равна 4 (8 - 4 = 12 - 8 = 16 - 12). А вот набор чисел 3, 5, 8, 12, 17 уже нельзя отнести к рассматриваемому виду прогрессии, поскольку разность для него не является постоянной величиной (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Важные формулы

Приведем теперь основные формулы, которые понадобятся для решения задач с использованием арифметической прогрессии. Обозначим символом a n n-й член последовательности, где n - целое число. Разность обозначим латинской буквой d. Тогда справедливы следующие выражения:

  1. Для определения значения n-го члена подойдет формула: a n = (n-1)*d+a 1 .
  2. Для определения суммы первых n слагаемых: S n = (a n +a 1)*n/2.

Чтобы понять любые примеры арифметической прогрессии с решением в 9 классе, достаточно запомнить эти две формулы, поскольку на их использовании строятся любые задачи рассматриваемого типа. Также следует не забывать, что разность прогрессии определяется по формуле: d = a n - a n-1 .

Пример №1: нахождение неизвестного члена

Приведем простой пример прогрессии арифметической и формул, которые необходимо использовать для решения.

Пусть дана последовательность 10, 8, 6, 4, ..., необходимо в ней найти пять членов.

Из условия задачи уже следует, что первые 4 слагаемых известны. Пятое можно определить двумя способами:

  1. Вычислим для начала разность. Имеем: d = 8 - 10 = -2. Аналогичным образом можно было взять любые два других члена, стоящих рядом друг с другом. Например, d = 4 - 6 = -2. Поскольку известно, что d = a n - a n-1 , тогда d = a 5 - a 4 , откуда получаем: a 5 = a 4 + d. Подставляем известные значения: a 5 = 4 + (-2) = 2.
  2. Второй способ также требует знания разности рассматриваемой прогрессии, поэтому сначала нужно определить ее, как показано выше (d = -2). Зная, что первый член a 1 = 10, воспользуемся формулой для n числа последовательности. Имеем: a n = (n - 1) * d + a 1 = (n - 1) * (-2) + 10 = 12 - 2*n. Подставляя в последнее выражение n = 5, получаем: a 5 = 12-2 * 5 = 2.

Как видно, оба способа решения привели к одному и тому же результату. Отметим, что в этом примере разность d прогрессии является отрицательной величиной. Такие последовательности называются убывающими, так как каждый следующий член меньше предыдущего.

Пример №2: разность прогрессии

Теперь усложним немного задачу, приведем пример, как

Известно, что в некоторой 1-й член равен 6, а 7-й член равен 18. Необходимо найти разность и восстановить эту последовательность до 7 члена.

Воспользуемся формулой для определения неизвестного члена: a n = (n - 1) * d + a 1 . Подставим в нее известные данные из условия, то есть числа a 1 и a 7 , имеем: 18 = 6 + 6 * d. Из этого выражения можно легко вычислить разность: d = (18 - 6) /6 = 2. Таким образом, ответили на первую часть задачи.

Чтобы восстановить последовательность до 7 члена, следует воспользоваться определением алгебраической прогрессии, то есть a 2 = a 1 + d, a 3 = a 2 + d и так далее. В итоге восстанавливаем всю последовательность: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, a 7 = 18.

Пример №3: составление прогрессии

Усложним еще сильнее условие задачи. Теперь необходимо ответить на вопрос, как находить арифметическую прогрессию. Можно привести следующий пример: даны два числа, например, - 4 и 5. Необходимо составить прогрессию алгебраическую так, чтобы между этими помещалось еще три члена.

Прежде чем начинать решать эту задачу, необходимо понять, какое место будут занимать заданные числа в будущей прогрессии. Поскольку между ними будут находиться еще три члена, тогда a 1 = -4 и a 5 = 5. Установив это, переходим к задаче, которая аналогична предыдущей. Снова для n-го члена воспользуемся формулой, получим: a 5 = a 1 + 4 * d. Откуда: d = (a 5 - a 1)/4 = (5 - (-4)) / 4 = 2,25. Здесь получили не целое значение разности, однако оно является рациональным числом, поэтому формулы для алгебраической прогрессии остаются теми же самыми.

Теперь добавим найденную разность к a 1 и восстановим недостающие члены прогрессии. Получаем: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, что совпало с условием задачи.

Пример №4: первый член прогрессии

Продолжим приводить примеры арифметической прогрессии с решением. Во всех предыдущих задачах было известно первое число алгебраической прогрессии. Теперь рассмотрим задачу иного типа: пусть даны два числа, где a 15 = 50 и a 43 = 37. Необходимо найти, с какого числа начинается эта последовательность.

Формулы, которыми пользовались до настоящего времени, предполагают знание a 1 и d. В условии задачи об этих числах ничего неизвестно. Тем не менее выпишем выражения для каждого члена, о котором имеется информация: a 15 = a 1 + 14 * d и a 43 = a 1 + 42 * d. Получили два уравнения, в которых 2 неизвестные величины (a 1 и d). Это означает, что задача сводится к решению системы линейных уравнений.

Указанную систему проще всего решить, если выразить в каждом уравнении a 1 , а затем сравнить полученные выражения. Первое уравнение: a 1 = a 15 - 14 * d = 50 - 14 * d; второе уравнение: a 1 = a 43 - 42 * d = 37 - 42 * d. Приравнивая эти выражения, получим: 50 - 14 * d = 37 - 42 * d, откуда разность d = (37 - 50) / (42 - 14) = - 0,464 (приведены лишь 3 знака точности после запятой).

Зная d, можно воспользоваться любым из 2 приведенных выше выражений для a 1 . Например, первым: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Если возникают сомнения в полученном результате, можно его проверить, например, определить 43 член прогрессии, который задан в условии. Получим: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Небольшая погрешность связана с тем, что при вычислениях использовалось округление до тысячных долей.

Пример №5: сумма

Теперь рассмотрим несколько примеров с решениями на сумму арифметической прогрессии.

Пусть дана числовая прогрессия следующего вида: 1, 2, 3, 4, ...,. Как рассчитать сумму 100 этих чисел?

Благодаря развитию компьютерных технологий можно эту задачку решить, то есть последовательно сложить все числа, что вычислительная машина сделает сразу же, как только человек нажмет клавишу Enter. Однако задачу можно решить в уме, если обратить внимание, что представленный ряд чисел является прогрессией алгебраической, причем ее разность равна 1. Применяя формулу для суммы, получаем: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Любопытно отметить, что эта задача носит название "гауссовой", поскольку в начале XVIII века знаменитый немецкий еще будучи в возрасте всего 10 лет, смог решить ее в уме за несколько секунд. Мальчик не знал формулы для суммы алгебраической прогрессии, но он заметил, что если складывать попарно числа, находящиеся на краях последовательности, то получается всегда один результат, то есть 1 + 100 = 2 + 99 = 3 + 98 = ..., а поскольку этих сумм будет ровно 50 (100 / 2), то для получения правильного ответа достаточно умножить 50 на 101.

Пример №6: сумма членов от n до m

Еще одним типичным примером суммы арифметической прогрессии является следующий: дан такой чисел ряд: 3, 7, 11, 15, ..., нужно найти, чему будет равна сумма его членов с 8 по 14.

Задача решается двумя способами. Первый из них предполагает нахождение неизвестных членов с 8 по 14, а затем их последовательное суммирование. Поскольку слагаемых немного, то такой способ не является достаточно трудоемким. Тем не менее предлагается решить эту задачу вторым методом, который является более универсальным.

Идея заключается в получении формулы для суммы алгебраической прогрессии между членами m и n, где n > m - целые числа. Выпишем для обоих случаев два выражения для суммы:

  1. S m = m * (a m + a 1) / 2.
  2. S n = n * (a n + a 1) / 2.

Поскольку n > m, то очевидно, что 2 сумма включает в себя первую. Последнее умозаключение означает, что если взять разность между этими суммами, и добавить к ней член a m (в случае взятия разности он вычитается из суммы S n), то получим необходимый ответ на задачу. Имеем: S mn = S n - S m + a m =n * (a 1 + a n) / 2 - m *(a 1 + a m)/2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m/2). В это выражение необходимо подставить формулы для a n и a m . Тогда получим: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d *(3 * m - m 2 - 2) / 2.

Полученная формула является несколько громоздкой, тем не менее сумма S mn зависит только от n, m, a 1 и d. В нашем случае a 1 = 3, d = 4, n = 14, m = 8. Подставляя эти числа, получим: S mn = 301.

Как видно из приведенных решений, все задачи основываются на знании выражения для n-го члена и формулы для суммы набора первых слагаемых. Перед тем как приступить к решению любой из этих задач, рекомендуется внимательно прочитать условие, ясно понять, что требуется найти, и лишь затем приступать к решению.

Еще один совет заключается в стремлении к простоте, то есть если можно ответить на вопрос, не применяя сложные математические выкладки, то необходимо поступать именно так, поскольку в этом случае вероятность допустить ошибку меньше. Например, в примере арифметической прогрессии с решением №6 можно было бы остановиться на формуле S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m , и разбить общую задачу на отдельные подзадачи (в данном случае сначала найти члены a n и a m).

Если возникают сомнения в полученном результате, то рекомендуется его проверять, как это было сделано в некоторых приведенных примерах. Как находить арифметическую прогрессию, выяснили. Если разобраться, то это не так сложно.

Публикации по теме